Math 259A Lecture 13 Notes

Daniel Raban

October 25, 2019

1 Cyclic and Separating Vectors, and The Extension of The Gelfand Transform

1.1 Cyclic and separating vectors

Definition 1.1. Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. $\xi \in H$ is a **cyclic vector** of M if $\overline{M\xi} = H$.

Definition 1.2. Let $M \subseteq \mathcal{B}(H)$ be a von Neumann algebra. $\xi \in H$ is a separating vector of M if when $x \in M$ satisfies $x\xi = 0, x = 0$.

Proposition 1.1. Let M = A be an abelian von Neumann algebra. If ξ is cyclic, it is separating.

Proof. If ξ is cyclic and $x\xi = 0$, then $\mathcal{A}(x\xi) = 0$. So $x\overline{\mathcal{A}\xi} = 0$. So x = 0.

Definition 1.3. If $\{p_i\}$ are projections in M with $p_i p_j = 0$, then we define $\sum_i p_i := \bigvee_i p_i$.

Lemma 1.1. If $\mathcal{A} \subseteq \mathcal{B}(H)$ is an abelian von Neumann algebra, then \mathcal{A} has a separating vector.

Proof. Let $\{\xi_i\}_{i\in I}$ be a maximal family of unit vectors such that $[A\xi_i]$ is mutually orthogonal. Then $\sum_i [A\xi_i] = 1$. To see why, suppose not. Then for $1 - \sum_i [A\xi_i] \neq 0$, take ξ_0 be a unit vector in the range of $1 - \sum_i [A\xi_i]$. Then for any fixed i, $\langle x\xi_0, y\xi_i \rangle = \langle \xi_0, x^*y\xi_i \rangle = 0$.

This implies that $\{\xi_i\}$ is countable, so let $\xi = \sum_{n\geq 1} 2^{-n}\xi_n$. We claim that if $x \in \mathcal{A}$ and $x\xi = 0$, then x = 0. Indeed, if $x\xi = 0$, then $[A\xi_n]x\xi = 0$, so $0 = x[A\xi_n](\xi) = 2^{-n}\xi_n$. This shows that $\xi_n = 0$ for all n, so $x[A\xi_n] = 0$ for all n. So xH = 0, making x = 0.

Corollary 1.1. Let H be separable, and let $\mathcal{A} \subseteq \mathcal{B}(H)$ be an abelian von Neumann algebra with $\xi \in H$ separating for \mathcal{A} . Let $p = p_{H_0} = [\mathcal{A}\xi]$. Then the map $\mathcal{A} \mapsto \mathcal{B}(H_0)$ given by $x \mapsto xp$ is a 1 to 1 *-algebra morphism which is SO-SO¹ continuous (with SO-SO continuous inverse).

Remark 1.1. We can also say this is WO-WO continuous.

¹This doesn't mean that it's only sort of continuous. But I know you had the thought.

1.2 Extension of the Gelfand transform

Theorem 1.1. Let $T \in \mathcal{B}(H)$ be a normal operator, let $\mathcal{A}_T = \{T, T^*\}''$ be the von Neumann algebra generated by T. Assume \mathcal{A}_T has a cyclic vector $\xi \in H$ with $||\xi|| = 1$. Then there exist a positive, regular Borel measure μ on $X = \operatorname{Spec}(T) \subseteq \mathbb{C}$ of support X, a unitary $U : H \to L^2(X, \mu)$, and an isometric *-morphism $\Phi : \mathcal{A}_T \to \mathcal{B}(L^2(X, \mu))$ implemented spactially by U; i.e. $\Phi(x) = UxU^{-1} \in \mathcal{B}(L^2(X, \mu))$. Moreover, Φ has range $\{M_f : f \in L^{\infty}(X, \mu)\}$, which is maximal abelian in $\mathcal{B}(L^2(X, \mu))$, and, when restricted to the C^* -algebra generated by T, T^* , is the Gelfand transform. In particular, $\Phi(T^n) = M_{z^n}, \Phi((T^*)^n) = M_{\overline{z}^n}$. The measure μ is given by

$$\int_X f\,d\mu = \langle f(T)\xi,\xi\rangle$$

Uniqueness: If μ_1 is a positive, regular Borel measure on \mathbb{C} with $\operatorname{supp}(\mu_1) = \operatorname{Spec}(T)$ and $\Phi_1 : \mathcal{A}_T \to L^{\infty}(X, \mu_1)$ extends Γ , then $\mu \sim \mu_1$ and $\Phi_1 = \Phi$.

Proof. Read the Douglas textbook for the proof.

Now if $T \in \mathcal{B}(H)$ is an arbitrary normal operator, what is its **Borel**/ L^{∞} calculus? Take a separating $\xi \in H$ for $\mathcal{A}_T = \{T, T^*\}''$. Then $\mathcal{A}_T \mapsto \mathcal{A}_T p \in \mathcal{B}([\mathcal{A}_T \xi])$ identifies $(\mathcal{A}_T, \langle \cdot, \xi, \xi \rangle) \to (L^{\infty}(\operatorname{Spec}(T)s, \mu), \mu).$

1.3 Projection geometry

Let $\mathcal{P}(M)$ denote the projections in the von Neumann algebra M.

Definition 1.4. If $e, f \in \mathcal{P}(M)$, then $e \sim f$ if there exists a partial isometry $v \in M$ with $\ell(v) = e$ and r(v) = f; i.e. $vv^* = e$ and $v^*v = f$.

Theorem 1.2. If $x \in M$, then $\ell(x) \sim r(x)$.

Proof. This is by the polar decomposition of x.

Theorem 1.3 (Paralellogram rule). If $e, f \in M$, then $(e \lor f - f) \sim (e - e \land f)$.

Proof. Use the fact that $e \lor f - f = \ell(e(1 - f))$, and $e - e \land f = r(e(1 - f))$.

Theorem 1.4 (Cantor-Bernstein). If $e \prec f$ and $f \prec e$, then $e \sim f$.