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1 Cyclic and Separating Vectors, and The Extension of The
Gelfand Transform

1.1 Cyclic and separating vectors

Definition 1.1. Let M ⊆ B(H) be a von Neumann algebra. ξ ∈ H is a cyclic vector of
M if Mξ = H.

Definition 1.2. Let M ⊆ B(H) be a von Neumann algebra. ξ ∈ H is a separating
vector of M if when x ∈M satisfies xξ = 0, x = 0.

Proposition 1.1. Let M = A be an abelian von Neumann algebra. If ξ is cyclic, it is
separating.

Proof. If ξ is cyclic and xξ = 0, then A(xξ) = 0. So xAξ = 0. So x = 0.

Definition 1.3. If {pi} are projections in M with pipj = 0, then we define
∑

i pi :=
∨

i pi.

Lemma 1.1. If A ⊆ B(H) is an abelian von Neumann algebra, then A has a separating
vector.

Proof. Let {ξi}i∈I be a maximal family of unit vectors such that [Aξi] is mutually orthog-
onal. Then

∑
i[Aξi] = 1. To see why, suppose not. Then for 1−

∑
i[Aξi] 6= 0, take ξ0 be a

unit vector in the range of 1−
∑

i[Aξi]. Then for any fixed i, 〈xξ0, yξi〉 = 〈ξ0, x∗yξi〉 = 0.
This implies that {ξi} is countable, so let ξ =

∑
n≥1 2−nξn. We claim that if x ∈ A and

xξ = 0, then x = 0. Indeed, if xξ = 0, then [Aξn]xξ = 0, so 0 = x[Aξn](ξ) = 2−nξn. This
shows that ξn = 0 for all n, so x[Aξn] = 0 for all n. So xH = 0, making x = 0.

Corollary 1.1. Let H be separable, and let A ⊆ B(H) be an abelian von Neumann algebra
with ξ ∈ H separating for A. Let p = pH0 = [Aξ]. Then the map A 7→ B(H0) given
by x 7→ xp is a 1 to 1 *-algebra morphism which is SO-SO1 continuous (with SO-SO
continuous inverse).

Remark 1.1. We can also say this is WO-WO continuous.
1This doesn’t mean that it’s only sort of continuous. But I know you had the thought.
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1.2 Extension of the Gelfand transform

Theorem 1.1. Let T ∈ B(H) be a normal operator, let AT = {T, T ∗}′′ be the von Neumann
algebra generated by T . Assume AT has a cyclic vector ξ ∈ H with ‖ξ‖ = 1. Then there
exist a positive, regular Borel measure µ on X = Spec(T ) ⊆ C of support X, a unitary
U : H → L2(X,µ), and an isometric *-morphism Φ : AT → B(L2(X,µ)) implemented
spactially by U ; i.e. Φ(x) = UxU−1 ∈ B(L2(X,µ)). Moreover, Φ has range {Mf : f ∈
L∞(X,µ)}, which is maximal abelian in B(L2(X,µ)), and, when restricted to the C∗-algebra
generated by T, T ∗, is the Gelfand transform. In particular, Φ(Tn) = Mzn, Φ((T ∗)n) =
Mzn. The measure µ is given by ∫

X
f dµ = 〈f(T )ξ, ξ〉 .

Uniqueness: If µ1 is a positive, regular Borel measure on C with supp(µ1) = Spec(T )
and Φ1 : AT → L∞(X,µ1) extends Γ, then µ ∼ µ1 and Φ1 = Φ.

Proof. Read the Douglas textbook for the proof.

Now if T ∈ B(H) is an arbitrary normal operator, what is its Borel/L∞ calculus?
Take a separating ξ ∈ H for AT = {T, T ∗}′′. Then AT 7→ AT p ∈ B([AT ξ]) identifies
(AT , 〈·, ξ, ξ〉)→ (L∞(Spec(T )s, µ), µ).

1.3 Projection geometry

Let P(M) denote the projections in the von Neumann algebra M .

Definition 1.4. If e, f ∈ P(M), then e ∼ f if there exists a partial isometry v ∈ M with
`(v) = e and r(v) = f ; i.e. vv∗ = e and v∗v = f .

Theorem 1.2. If x ∈M , then `(x) ∼ r(x).

Proof. This is by the polar decomposition of x.

Theorem 1.3 (Paralellogram rule). If e, f ∈M , then (e ∨ f − f) ∼ (e− e ∧ f).

Proof. Use the fact that e ∨ f − f = `(e(1− f)), and e− e ∧ f = r(e(1− f)).

Theorem 1.4 (Cantor-Bernstein). If e ≺ f and f ≺ e, then e ∼ f .
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